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Abstract—The IoT world evolves at a tremendously fast rate,
leaving some of the currently employed technologies behind.
The modern day user has more and more expectations: high
availability and performance, low energy consumption and high
privacy standards. If all of these things were achievable a decade
ago, the world is now witnessing an explosion of interconnected,
mobile devices, which consequently generate big volumes of data.
In addition to this, an exponential increase in real-time based
applications fuels even more the end users’ demands. Edge and
Fog computing paved the way to a new, different approach in
the light of delegating not only the Cloud for computational
and storage resources. By bringing processing resources closer
to the source, a completely different perspective was offered to
the research world. The emergence of these new models revealed
the need for different approaches and marked the beginning of
a major paradigm shift. Drop Computing expands the horizon
of the previous technologies to another level, by introducing
a decentralized model, based on opportunistic networks and
geographical co-locations. In this paper, we aim to optimize the
solution by introducing new scheduling strategies. We addressed
the proliferation of real-time applications by shaping deadline
focused algorithms and we analysed the results to evaluate the
system’s behaviour under various constraints.

Index Terms—Real-time Scheduling, Drop Computing, Dy-
namic ad-hoc Opportunistic Networks, Edge Devices, Mobile
Devices.

I. INTRODUCTION

For the past decade we have been witnessing a tremendous
expansion of the Internet of Things (IoT), which inevitably
triggered greater demands and raised expectations amongst
users. Nowadays, devices are expected to present advanced
functionalities that can exceed local computational capabili-
ties, in order to deliver a pleasant user experience. An ordinary
user has become accustomed to augmented reality, facial
recognition, mobile payments, advanced navigation capabil-
ities and synchronization with home environments. Aspects
such as latency sensitivity, reliability and power consumption
change the perspective from: ”We want things done” to: ”We
want things done fast and efficient” [16] [19].

To a certain degree, the cloud has managed to meet the
requirements for a higher quality of service (QoS) and helped
devices when their local resources were insufficient. The cloud
vision is based on shifting a part of the storage and tasks
processing away from local devices towards remote, over the
Internet premises. Without a doubt, this paradigm shift has

revolutionised the IT world and expanded the previous possi-
bilities. However, the fact that mobile devices rely heavily on
the cloud, marked a substantial increase in network overhead
and revealed a concerning issue regarding the sustainability of
the traditional approach. With so many devices accessing the
cloud data centers, one must wonder if cloud will be enough in
the foreseeable future. Technologies such as Edge Computing
and its related Mobile Edge Computing, Fog Computing or
CloudLets are viable alternatives with the central purpose of
bringing the cloud closer to the user. However, these solu-
tions introduce new challenges, such as privacy or reliability
concerns.

This paper proposes a scheduling method for Drop Comput-
ing - a paradigm shift towards a new model of decentralized
computing over multilayered networks, based on dynamic ad-
hoc opportunistic networks. Drop Computing combines cloud
and wireless technologies over a social crowd, formed between
mobile and edge devices and leverages the extended resources
for improved performance and efficient access. Therefore,
before accessing the Cloud, geographically co-located devices
are designated to perform the required tasks and the cloud
becomes a back-up plan. In this manner, Drop Computing
saves energy by reducing the number of unnecessary accesses
to cloud and compensates for the high cost of off-the-premise
rented resources [4]. We identified one vital aspect that must
be addressed in drop computing systems: scheduling. Resource
allocation is a sensitive and crucial component in designing
distributed systems and in this paper we will discuss various
models and strategies of scheduling tasks, both locally, on the
device, and globally, between devices [18].

For this purpose, we have extended the MobEmu simula-
tor (see Section IV) and extracted the results. The analysis
conducted in this paper adds a real-time component, relevant
for the use case detailed in Section V-A. We are particularly
interested in the real-time dimension added to the opportunistic
network, as such applications are proliferating in the IoT
world. The objective is to evaluate the behaviour and perfor-
mance of the system, depending on each scheduling strategy
when real-time tasks are introduced in the data flow.

In terms of privacy and security, an interesting discussion
can be had here. Since there is no entity that can act as a
central authority, trust and reputation mechanisms (such as



SAROS [3]) should be employed, so that only trustworthy
non-malicious nodes are used as relays or for computing tasks.
The advantage of a paradigm such as Drop Computing, which
is based on social connections and human interaction, is that
some trust information is implicitly know through the online
social networks (i.e., I can trust a node that I am friends on
Facebook with, because I know that person).

The rest of this paper is structured as it follows. Section II
of this paper presents other related technologies in more
detail - Fog, Edge, Mobile Edge Computing and how Drop
Computing complements them. A proposed use case will be
outlined for a better understanding of what will be addressed
afterwards. Section III zooms in the attention span and centers
our view on scheduling algorithms, firstly from a general
perspective and then in Drop Computing context. Different
strategies will be addressed [9] [17], but in order to support
the use case, scheduling real-time tasks will be the main
concern. Section IV aims to support the theoretical background
presented in the previous chapter with a practical approach,
by implementing the aforementioned general algorithms in
MobEmu simulator. After introducing the reader with a brief
description of the simulator, our chosen path of implemen-
tation will be addressed. The experimental results will also
be presented in this section. Section V-A puts everything
that we discussed in the light of the chosen use case. This
is where the scenario will be detailed and the authors will
have a clear view of how the concept translates in real life.
Section V-B summarizes all of our results in order to establish
if the objectives were met. We also present conclusions and
our vision of the future work in this project in Section VI.

II. BACKGROUND

Internet has become more than just a communication
medium, reaching the proportions of a large computation
platform, connecting billions of devices worldwide - an esti-
mated number of 23-24 billion connected devices. Because of
this technological explosion, the Quality of Experience (QoE)
and implicitly Quality of Service (QoS) have become key
components in the service providing industry. The number
of real-time applications is on the rise and metrics such as
latency, throughput and jitter are closely monitored for future
improvement.

Without the arrival of Cloud computing, applications that
now an ordinary user is accustomed to, could not have mate-
rialized: social networking, gaming, real-time video streaming
(Skype, Netflix), IoT data processing. Cloud made a break-
through in processing Big Data, becoming one of the most
relevant means of offloading data computation. The National
Institute of Standards and Technology extracted the most no-
table characteristics of Cloud: on-demand self-service, broad
network access, resource pooling, rapid elasticity, measured
service.

However, this centralized computational system faces big
challenges: more and more heterogeneous devices demand
access to it, leading to a serious negative impact not only
on latency and integrity of data, but also on maintenance

costs. Data-intensive applications that have QoS requirements
such as time constraints or energy consumption and the rising
number of users sending data, represent a major threat to
the Cloud model, which justifies the need for a paradigm
shift [5] [2].

In the light of this abrupt road towards higher maintenance
costs, scalability disparity, power consumption and high la-
tency, the alternatives did not cease to appear. Edge, Mobile
Edge and Fog Computing were born with the purpose of
expanding the horizon of cloud services.

Fog Computing caters the needs of the users by enabling
data processing closer to the devices, but not exclusively on
edge devices, as it happens in Edge Computing. The term
”fog” originates from the idea that fog is a cloud closer to the
ground [1] and reiterates the act of leveraging geographical
proximity. The main focus points for Fog Computing consist
of mobility, location awareness, low latency, heterogeneity and
support for large number of devices. In terms of location for
data processing, fog is more relaxed than edge computing and
data can be processed on any device connected to the same
LAN, not necessarily on the device or sensor itself [1] [15].
Fog Computing represents the big picture, which includes
Edge Computing, the next discussed platform.

Edge Computing suggests processing data at the edge of the
network, closer to where the data originated from. The term
edge refers to any resource with computational capabilities that
happens to be on the path between the source and the cloud
servers, usually closer to sensors or actuators [13]. Therefore,
edge devices have a double role: they can both produce
and process data. The responsibilities range from storage to
task processing or even acting as middleman between the
source and cloud. The key is to leverage the computational
capabilities within the local network, without flooding the
cloud with requests. Of course, cloud will still be available
to do the ”heavy lifting”, but it will not be so aggressively
solicited. Hence, we can identify a major advantage of this
approach: the number of accesses to cloud is reduced and
data processing is significantly faster. In terms of real-time
restrictions, edge computing is an excellent candidate. Another
notable benefit of EC involves the security aspect - data is
contained closer to the source, without being transferred over
the internet [9], [10] [20].

Multi-access Edge Computing (MEC) is a subset of Edge
Computing, advocating the same principles, applied to mobile
networks. MEC is a relatively new technology, standardized by
ETSI, that provides computing capabilities at the edge of the
cellular network. In this case, location awareness techniques
occur inside Radio Access Networks (RAN) and closer to
mobile subscribers. Article [14] depicts various scenarios, such
as augmented reality, intelligent video acceleration, connected
cars or IoT gateway where MEC proves to be applicable. Once
more, a tighter collaboration between co-located nodes seems
to be the right answer to cellular congestion.

Fog, Edge and Mobile Computing have less processing and
storage capabilities, making them more suitable for latency-
sensitive applications. However, the downtime is reduced,



since data is distributed to proximity nodes and continuous
Internet access is not required, making these platforms much
more secure than the cloud. An interesting point of view was
made in [15], regarding the impact of man-in-the-middle at-
tack, which can become a frequent threat in fog infrastructure.
The results were satisfactory and the attack showed minimal
impact on CPU and memory usage.

With the emergence of these new platforms, it is clear
that we are witnessing a migration from the traditional cloud
computing towards collaborative, device-centered computing.

III. REAL-TIME SCHEDULING IN DROP COMPUTING

A. A general view of scheduling problem

We consider scheduling in Drop Computing, because we
aim to have a better control over how the resources are
allocated between the nodes. This decision highly impacts
the parameters of the system and after repeatedly stating the
importance of efficiency and low latency in the future of IoT,
optimizing and calibrating system parameters quantify as a
first priority. In a large scale decentralized architecture, where
big data is transferred at an unprecedented rate, we meet het-
erogeneous nodes and computational demanding workloads,
often accompanied by various constraints. The scheduler is
vital for the reliability, availability and performance of the
system. In a decentralized architecture, the probability of
disproportion between nodes is relatively high. Some nodes
can be almost inactive, or really ”selfish”, while other nodes
are extremely loaded. The term ”selfish” is relevant in a
socially connected crowd and it reveals the social status
of the device - in this case, the node is not willing to
participate and help other neighbours with their tasks. On
the opposite side, an ”altruistic” node accepts many tasks
offloaded by other devices, contributing to the welfare of
the system. This is where load balancing steps in, or as
we will call it: global scheduling. On the other hand, local
scheduling refers to the local ”administrative issues”, on the
premises of a single node [6]. Our work evolves in a dynamic,
collaborative architecture, with little to no a priori knowledge
of the environment. For the case of local scheduling this aspect
is not problematic, since each node has a full understanding of
its own resources. However, on the global scheduling, as far
as a device is concerned, it can meet almost any type of device
in its proximity, in a variable length social crowd. Therefore,
the device cannot make well informed decisions and it may
sometimes need to adapt its choices.

B. Scheduling Real - Time tasks in Drop Computing

There is an undeniable correlation between QoE and real-
time features in devices these days. Mobile app developers
invest in real-time applications and they have good reasons to
do so. In just 24 hours: 24 billion Whatsapp messages are sent,
2 billion photos and 250 millions videos, 3 billion Facebook
videos are watched, 760 million Snapchat pictures are shared,
99 million hours of Youtube are watched, 80 million Instagram
photos are uploaded.

Real-time integration gives users the sense of live par-
ticipation and interaction with multiple instances. Chatting
with your relatives and friends while booking a flight and
listening to your favourite music has never been easier. This
technology allows us to engage in multiple activities without
being aggressively extracted from the real world. It blends so
well with the world around us, that the users have become
almost addicted to it, which is why real-time integration
is indeed a basic requirement. Tasks with deadlines can be
divided into three categories [8] [11]:

• critical tasks or applications with hard deadlines - these
are tasks that must be completed before the deadline un-
der any circumstances, otherwise the results will undoubt-
edly be catastrophic. In aviation or military applications,
critical tasks are often met and their negative outcome is
a potential human-life threat;

• essential tasks or applications with firm deadlines - these
tasks can exceed the deadline without such disastrous
implication. Nevertheless, the performance of the system
will seriously be damaged;

• non essential tasks or applications with soft deadlines
- these tasks can exceed their deadlines without any
significant impact on the overall performance.

When referring to real-time tasks in our research, we mainly
focus on critical and essential tasks. However, at the current
state of development the essential tasks will be more prevalent,
especially in the context of our use cases.

C. Scheduling Model

Our approach of real-time dimension in the simulator will be
similar to the concept of streaming [7]. One large task is split
into smaller, sorted tasks that are sent from device to device
(multi-hop transmission) until they reach their destination.
There, tasks are once again be sorted, to ensure their continuity
and later executed as other tasks are being received. The
main concern is to keep the sequence of tasks in the original
order, even if some packet loss occurs. File downloading for
example, is not a viable option when discussing real-time
scenarios because not only it forces the receiver to wait for the
full download of the file, but also consumes valuable storage
resources.

What distinguishes real-time tasks from ordinary tasks is a
certain set of constraints that are enforced [7]:

• they have priority in execution, because they need to
arrive faster at the destination

• they must be received in the order of transmission
• once lost, they are lost forever - there is no retransmission
• once late, they are useless

This strategy is a best effort strategy, which means that the
service does not provide any guarantees regarding transmission
rate. Packet loss can occur at any time even if we do not send
packets over the internet - in wireless channels for example,
radio frequency interference can affect data transmission. We
envisioned this model as a User Datagram Protocol-like model:



• connection-less communication - devices source and des-
tination do not have to establish a connection previous to
starting the actual data transmission;

• delivery is not guaranteed;
• no flow control and re-transmission mechanism.
This means of data dissemination exhibits a high level of

flexibility in choosing the type of communication. For the
purpose of this paper, only unicast requests were tested, but,
support for multicast and broadcast is remarkably easy to add.
Since packets are moved from one node to another, each node
can decide if it should accept the request or not. In unicast,
only one node will accept it, but in multicast or broadcast, this
constraint can be relaxed.

In order to understand the problem of global schedul-
ing, we first need to assess the initial situation of our re-
sources as it follows. We have a set of n nodes, N =
{N0, N1, ..., Nn−1}, n = |N | and each node generates a
set of t tasks, Tnode = {T0, T1, ..., Tt−1}, t = |Tnode|.
Tasks can be divided into three main types of tasks:
{SMALL,MEDIUM,LARGE}, but the medium and the
large tasks can also be regarded as real-time tasks.

Global scheduling aims to distribute as fairly as possible all
the tasks from node A to m nodes from N , where m ≤ n, m =
|F |: F = {node ∈ N | node isCloseTo A}, where isCloseTo
is a function that determines whether a node is in the proximity
of another node and if the neighbourhood requirement is met
and F is the set of neighbours for node A.

Due to the mobility of the nodes, the m value is variable
and depends on the exact location of each node at a certain
moment of time. The closeness condition is met when two
nodes met more than two times during the simulation trace.

In the case of local scheduling, tasks must be assigned to
processors. We have a node, which has a set of tasks T to
execute - its own or from other nodes, it does not matter: T =
{T0, T1, ..., Tt−1}, t = |T |. These tasks must be assigned to
the processor of the node A: P = {P0, P1, ..., Pp−1}, p = |P |.

Regardless of the scheduling strategy, real-time tasks will
always have priority in front of other tasks. When dealing
with local scheduling, a frequently encountered set of metrics
is usually applied, that help us assess the performance of the
system:
• arrival time, a(Ti) - when a task enters into ready state;
• burst time, b(Ti) - represents the total time needed for

the execution of the task;
• completion time, c(Ti) - when a task completes its

execution;
• turnaround time, t(Ti) - total time spent by the task from

its arrival to its completion;
• waiting time, w(Ti) - total time spent by the task while

waiting for CPU in ready queue.

D. Scheduling Algorithms

Global scheduling. The global scheduling policy prevents
nodes from having disproportionate workloads. Tasks are
spread evenly throughout the social crowd by means of dif-

ferent strategies. Our global scheduler has two components:
balancer and publisher.

The balancer is used when two devices make contact and
exchange information. If the nodes are not balanced in terms
of workload, than balancing algorithms remedy the situation.
The publisher is called when the current node needs to decide
where to send the generated tasks. In this case, there is no need
for a specific encounter with another node. This dissemination
technique is essential for keeping the data in continuous
movement, otherwise the tasks might not be executed on time.

For the publisher component, we identified three algorithms
suitable for our needs: Default Publisher (cf. Alg. 1), Bidding
Publisher (cf. Alg. 2), Real-Time Publisher (cf. Alg. 3) - as
latency is such an important factor in real-time transmission,
flooding all the neighbours with tasks can slow down the
communication.

The goal of these algorithms is to offer a comparison and
analysis support for different scheduling strategies, in the
context of Drop Computing. We aim to address well-known
scheduling algorithms and investigate their behaviour in the
proposed paradigm. Therefore, the first algorithm presented,
Default Publisher, is the naive implementation of the global
scheduling, in which all tasks are disseminated through all the
neighbours. In this case, the overhead is worst-case scenario,
with maximum level. Bidding Publisher aims to improve the
overhead and splits the tasks between neighbours only if
they are willing to participate with their resources in the
computation process. Once the communication overhead has
been reduced, Real-Time Publisher prioritises the real-time
tasks in the Bidding Publisher process. In this algorithm we
generate a random number of nodes to deliver the real-time
tasks, no more than a quarter of the total number.

Algorithm 1 Default Publisher
1: currentTasks← list of tasks to be disseminated
2: for neighbour = 1, 2, . . . do
3: neighbour.tasks.add(currentTasks)
4: end for

For the balancing component, five algorithms were imple-
mented: Bidding Balancer, Broadcast Balancer, Initial Time
Balancer and Remaining Time Balancer.

We followed the model presented by K. Ramamritham, J. A.
Stankovic, and W. Zhao, in [12] and respected their taxonomy.
When local scheduling fails, a collaborative alternative is
looked for. In this respect, four types of algorithms were
implemented by us:

• random scheduling - we send the task to a random node
in our social network. The approach is easy to implement,
but redundant transmission might occur.

• focused addressing - we send the task to nodes that are
most rich in resources and increase the probability of
solving the task before its due-date.

• bidding - two components work closely together for this
strategy: the manager and the contractor [6]. Managers



Algorithm 2 Bidding Publisher
1: tasksMap← map with all the associations

between nodes and tasks
2: for neighbour : neighbours of current node do
3: initialize list of tasks to that neighbour in the map
4: each list is ordered by task ID
5: end for
6: for task : tasks of current node do
7: maxBid← findMaxBid();
8: maxNode← maxNodeBid()
9: for neighbour : neighbours of current node do

10: currBid← neighbour′s bidding value
11: if currBid > maxBid then
12: this node becomes the highest contractor
13: end if
14: end for
15: add task to the selected contractor′s list
16: end for

Algorithm 3 Real-Time Publisher
1: tasksMap← map with all the associations

between nodes and tasks
2: for neighbour : neighbours do
3: initialize list of tasks to that neighbour in the map
4: real − time tasks will be added first
5: end for
6: this.tasks.sort(real − time tasks first)
7: for task : tasks do
8: width← number of nodes to send the task to
9: while width > 0 and isRealT ime(task) = true do

10: maxBid← findMaxBid();
11: maxNode← maxNodeBid()
12: for neighbour : neighbours do
13: currBid← neighbour′s bidding value
14: if currBid > maxBid then
15: this← maxNode
16: end if
17: end for
18: add task to the selected contractor′s list
19: width← width − 1
20: end while
21: end for

look for offers from contractor nodes and the highest
bidding node will receive the task.

• flexible - this algorithm tries to merge the benefits of
focused and bidding strategies. If the first one fails, the
bidding takes place.

Local scheduling. Local scheduling administrates the al-
location of resources between processors on a single device.
After the global scheduler has completed its job, the local
scheduler is in charge with task execution. We implemented a
series of algorithms, both for the real-time case and without.
The only difference between real-time and non real-time lays

in a few set of constraints [7]:
• no matter what algorithm of scheduling is enforced, real-

time tasks will always be first in the queue of tasks to
execute. This aspect is handled in the comparator - re-
gardless of insertion policy, real-time tasks have priority.
The comparator establishes the task importance using the
base metric of algorithm in order to sort the execution
queue efficiently. For example, if we have First Come
First Served (FCFS) algorithm with real-time comparator,
the queue will begin with real-time tasks sorted in FCFS
order, continuing with the other tasks, in FCFS order.

• real-time tasks cannot be executed on a device that does
not represent the destination for the certain task. Real-
time tasks will be passed around and only executed on
the destination node.

• real-time tasks that arrive too late at the destination will
be dropped. For example, suppose device A sends a
stream of tasks {T0, T1, T2, T3} to node B. Assuming
the last real-time task executed on B, coming from node
A is T2, if B receives task T1, T1 will be dropped.

A vastly used taxonomy in scheduling strategies consists of
dividing them into two main categories (see Table I):
• preemptive - Round-Robin, Priority Round-Robin, Earli-

est Due Date (EDD)
• non-preemptive - FCFS, Last Come First Served (LCFS)
The algorithms proposed and implemented in the simulator

are: FCFS, Earliest Due-Date (Earliest Deadline First), Round
Robin (RR), Priority Round Robin.

The size of quanta in Round Robin algorithm is essential
for the outcome of the scheduling and the performance of
the system. Most often, the time quanta is chosen between
10 and 100 milliseconds. It is essential not to choose a value
too small for the system, because this will result in a waste
of CPU time for context switches. On the other hand, if the
quanta is too big, smaller processes are forced to wait too
long for their turn and the interactivity of the system will be
seriously damaged - after all, Round Robin intents to be better
than FCFS. However, if the quanta is too small, the number of
context switches rise and dramatically impact the performance.

IV. MODELING USING MOBEMU

A. MobEmu simulator

MobEmu is the simulation framework that enabled us to
carry out our research. It was especially designed to eval-
uate opportunistic networks (ON) and to test routing and
dissemination algorithms in the context of mobility traces. A
more exhaustive analysis upon synthetic mobility models and
mobility traces is conducted in [8]. However, for this paper we
test our solutions based on the synthetic, social-based models.
One of the key aspects of Drop Computing is the human
mobility, which is why social-based models are a viable option
in this scenario.

The Trace implemented in MobEmu is a vital component
that contains a list of Contacts and temporal markers such as
start time, end time and sample time.



TABLE I
PREEMPTIVE VS. NON-PREEMPTIVE SCHEDULING

Criteria Non-Preemptive Preemptive
Definition The process acquiring the CPU cannot be interrupted.

It will release the CPU after it finishes its execution.
All processes have access to CPU resources only for a limited amount
of time. Context switches are enforced by the system and the processes
must comply.

Starvation A process with high burst-time can monopolize the
CPU.

Starvation can occur if processes with high priorities are constantly added
in the ready queue.

Overhead No overhead Overhead from context switches

The Context of a node contains the node’s id and informa-
tion about Topics. Just like in real life, a node can manifest
some particular interest in certain topics. Because we are only
interested in simulating the behaviour, topics are not described
in such detail - it is enough to be aware of the concept.

For identification, each Node has a distinct, unique ID,
throughout the duration of the simulation. The storage ca-
pabilities of each node are registered in the dataMemory.
Dissemination algorithms rely on sending data from node to
node, therefore we need to know exactly how much data can
be stored on a node. It goes without saying that a device with
more storage space will have a higher dissemination power, but
it can also cause a delay in transmission as the decision making
process is more difficult. Bear in mind that this memory
refers to memory allocated just for data received from other
nodes; for its own data, the node has a different storage area
- ownMessages. Both these memories are just collections of
Message objects. A message that can be exchanged between
two nodes has a unique ID, source, destination, the message
itself, a timestamp and some tags for the Context.

B. Extension

The first step in implementing the scheduling algorithms
was to define a class for system resources emulation, Sys-
temData. SystemData objects keep track of CPU, RAM and
disk usage with helper methods such as useRAM, useStorage,
getLoad or updateCPUUsage.

In our simulation, we modified the types of tasks to three
categories: SMALL, MEDIUM and LARGE. This taxonomy
must be reflected in statistics about the hardware resources.
For that, in the Task class we added methods that return cycles
per instruction, RAM usage and transfer size adjusted to each
of those three types. We view small tasks as CPU intensive,
medium tasks as a mixture of CPU bound and I/O bound and
large tasks as I/O intensive. Thus, a device has a more detailed
view upon RAM, ROM, CPU and battery depletion rate.

MobEmu already supported drop computing algorithm, we
just added a few features to prepare the infrastructure for the
scheduling step. Two key components in MobEmu’s initial
class Device are worth mentioning [4]:

• onTick (inherited from parent class Node) - describes
what a device does at each clock tick. This is where the
device generates new tasks if it doesn’t have any tasks left
for execution and adds them to its task set. Moreover, if
the Cloud is used, this method sends them to the Cloud.

• onDataExchange (called from exchangeData in parent
class Node) - this method is called when two devices
meet. They exchange data about the completed tasks, they
balance their workloads or even completely offload tasks
if the nodes are familiar.

As stated previously, our approach towards scheduling is
based on a bivalent taxonomy: global and local scheduling.
To achieve this, we implemented three crucial components in
form of interfaces:
• Scheduler - assigns tasks to processors;
• Balancer - balances the tasks of two encountered nodes;
• Publisher - is a more general global scheduler, used to

propagate tasks to neighbour nodes. This is the first step
in global scheduling for a device and is meant to offer a
broader perspective upon the network.

This blueprint allowed us to add and interchange strategies
with minimum impact on the skeleton of the code. We chose
to work with sorted sets, more specifically TreeSet implemen-
tation because it allows us a relatively straightforward addition
of different Comparators. Each local scheduling strategy has
its own comparator. For the real time case, the comparators
were modified - regardless of the order imposed by a certain
scheduling algorithms, the first addressed tasks will always be
the real-time tasks. Hopefully, this optimization will increase
the hit rate for real-time tasks.

V. RESULTS

A. Use Case: Drop Computing for Care Centers

Drop Computing works best when the nodes density is
rather high. If devices are located in sparse networks, than the
possibility of offloading data are extremely low. However, in
places such as schools, colleges, shopping malls or healthcare
centers, devices are numerous and in the same geographical
area. Possibilities are abundant in nowadays world, simply
because crowds of people are often met in daily activities. For
this paper, we thought of applying this paradigm in healthcare
centers. Our motivation regarding this choice consists of two
elements: (1) healthcare centers are never empty, therefore we
have the certainty that a device will find enough nodes to
exchange data and offload tasks, (2) this application also has
a noble purpose - there is always a highest sense of reward
when pursuing a greater good.

B. Experimental Results

The foundations of our testing platforms were already set
and described in [4] - a big part of the configuration presented



in the article remained unchanged, simply because alterations
were not demanded. We continued our evaluations on the
same initiated path, using the HCMM mobility model. The
parameters used to configure the mobility model are: 20 nodes,
a trace duration of 9 hours, 200x200 grid, 4 communities and
4 travelers. As previously stated, we used devices that tend to
follow the patterns of iPhone 7, with 2GB RAM and 128GB
of storage and connections with other nodes are carried out
via Bluetooth. Wireless technology is used for reaching other
communities. The motivation behind these parameters is as
it follows: 9 hours for a healthcare shift, 4 communities for
different types of users: patient, doctor, nurse, relatives and 4
travelers, one for each community. As for the device used, we
chose iPhone 7 because it was the most popular Apple mobile
phone, both in 2019 and in 20201.

To test our implementation, we generated 240 combina-
tions between schedulers, balancers and publishers. Tested
schedulers [alongside with the configuration order numbers]:
FCFS - [0 - 59], Round Robin - [60 - 119], LCFS - [120 -
179] and EDD - [240 - 299]. The tested balancers [11] are:
Bidding Balance, Broadcast Balance, Initial Time Balance,
and Remaining Time Balance. The tested publishers: Default
Publisher, Bidding Publisher and Real-Time Publisher.

Moreover, for each scheduling algorithm, we tested the real-
time case too, which prioritises real-time tasks before any other
strategy applied. Regarding the task groups limitation on each
device, the tests that we run showed that in the interval [2-256]
(exponents of two), the number of real-time tasks generated
was not so relevant, even zero in certain cases. Because the
set of data generated by each version of configuration is
tremendously high, we decided to reduce the evaluation to
a set of three values for the maximum groups limitation:
tasksGroupsLimit ∈ {512, 1024, 2048}.

We propose for evaluation a pair of non-preemptive local
scheduling algorithms, FCFS (see Figure 1) and LCFS (see
Figure 2), and a preemptive one, EDD (see Figure 3), accom-
panied by different global scheduling algorithms. From a first
glance, some configurations are clearly not viable for real-
time systems at all. From these charts we can draw multiple
conclusions. First of all, it is helpful to visualize these charts
as two halves: the first half doesn’t get any sort of help from
the cloud, whereas the second half sends some of the tasks to
the cloud for computation, because their time has expired and
the devices couldn’t execute them.

Needless to say, the general completion rate is visibly
improved when involving the cloud. However, as predicted,
the whole ”journey” of the task from the device to the cloud
and back has a major impact on average turnaround time (TAT)
and waiting time (WT). However, promising results lay on the
real-time side. The completion rate for real-time tasks in the
first half is much better, with a few, understandable exceptions.
Moreover, when using combinations of real-time global and
local scheduling, the results are favourable.

1https://deviceatlas.com/blog/most-popular-iphones

Fig. 1. Real-Time Tasks Completion Rate for Max 2048 Groups FCFS. We
generated results for all possible combinations between balancer and publisher,
with and without the use of cloud for the FCFS algorithm.

Fig. 2. Real-Time Tasks Completion Rate for Max 2048 Groups LCFS. We
generated results for all possible combinations between balancer and publisher,
with and without the use of cloud for the LCFS algorithm.

Another algorithm that we tested is the generic version of
Round Robin. We varied the quanta allocated for each task
with values within a wider range: quanta ∈ [50 − 950] ms.
The results showed that regardless of the quanta used, when
Round Robin is implemented at a local level, the results are
almost unchanged - only small variations occur (see Figure 4).

Some successful FCFS configurations are (in terms of real-
time completion rate, average TAT and average WT):

• Broadcast Balancer + Real-Time comparator + Real-Time Publisher;
• Initial Time Balancer + Real-Time / Non Real-Time comparator + Real-

Time Publisher;
• Remaining Time Balancer + Real-Time comparator + Real-Time / Non

Real-Time Publisher.
Some successful LCFS configurations are (in terms of real-

time completion rate, average TAT and average WT):
• Bidding Balancer + Real-Time comparator + Bidding Publisher;
• Broadcast Balancer + Real-Time comparator + Real-Time Publisher(100

% completion rate);
• Remaining Time Balancer + Real-Time comparator + Real-Time Pub-

lisher(100 % completion rate).

Some successful EDD configurations are (in terms of real-
time completion rate, average TAT and average WT):

• Bidding Balancer + Real-Time comparator + Real-Time Publisher;
• Broadcast Balancer + Real-Time comparator + Default Publisher;
• Remaining Time Balancer + Real-Time comparator + Real-Time Pub-

lisher.

We understand from these results that our objective can
be successfully met when the parameters of the systems are



Fig. 3. Real-Time Tasks Completion Rate for Max 2048 Groups EDD. We
generated results for all possible combinations between balancer and publisher,
with and without the use of cloud for the EDD algorithm.

Fig. 4. Real-Time Rasks Completion Rate for Each Configuration Depending
on Each Quanta for Max 2048 Groups RR. We generated results for all
possible combinations between balancer and publisher, with and without the
use of cloud for the RR algorithm. In this case, we changed the quanta value.

configured accordingly. For developing an app that features
mainly real-time activities, the optimal strategy is to employ
those algorithms that we designed especially for these cases.

VI. CONCLUSIONS

In this paper, we proposed a decentralized, collaborative
model, based on Opportunistic Networks and ad-hoc dynamic
connections. The proliferation of the IoT dimension requested
for a change in the traditional client-server, centralized model
for a number of reasons: sending data over the Internet has
a negative impact on latency and affects the system’s per-
formance, most particularly in time constrained applications,
this unprecedented traffic to the Cloud for every single device
imposes major privacy risks. Our research was based on
a worthy entry-point regarding discussing drop computing
paradigm: the aspect of tasks scheduling and balancing. We
believe that by optimizing scheduling strategies and using
different algorithms for the appropriate corresponding context,
the performance of the system will be boosted significantly.
Due to the proliferation of real-time based application, we also
added real-time tasks in our algorithms.

We intend to develop more algorithms, especially by lever-
aging the human tie aspect. We started a strategy called Friends
First, but there is still work to be done. Moreover, as a future

goal, we want to test all the algorithms under even stricter
regulations and more demanding computational tasks - stress
testing would be necessary, but also time consuming. The
mobile application will also need a detailed and rigorous
attention, in order to prove the efficiency and usability of
Cloud Computing. Real-time testing will also be required. We
plan to extend the mobile app and even test it real life.
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